Showing posts with label Haplogroups. Show all posts
Showing posts with label Haplogroups. Show all posts

Wednesday, February 14, 2018

Reminder to Eurogenes and Davidski: You ARE NOT Your Y Chromosome, and Your Manhood Isn't Tied to It!

A great study just came out that confirms what many of us have noticed.  Increasingly, instead of dude being proud of their ethnic group (and risk being called racist) or even their soccer team (and risk being called a hooligan), many misguided men, especially in online forums, are tying their identity to their Y chromosome haplogroup!  

Yes, you laugh, I laugh, but any quick read of any of the worst offenders (Maciamo May at Expedia, Davidski at Eurogenes), will reveal this concept, as well as some very fragile male egos, redefined with junk pop-science.

The study is called:

Constructing Masculinity through Genetic Legacies: Family Histories, Y-Chromosomes, and “Viking Identities"

Some highlights:

The practice of searching for a Viking ancestor is, on one level, an exercise in redundancy. At a distance of a millennium, simple mathematics demonstrates that everyone, at least in Western Europe, and most probably further afield, has Viking ancestry (Rutherford 2016).

Rather, this kind of texture was what the participants in our research were interested in: the majority were seeking confirmation of Viking ancestry, for which they already had amassed a certain amount of (usually genealogical) evidence. For such individuals, to be told “yes, you are descended from Vikings, because everybody is”, is seemingly psychologically insufficient.

Critiques from population geneticists likening such claims to “genetic astrology” are widespread (e.g., Balding et al. 2010; Thomas 2013), while the problematic potential of such narratives to essentialise ethnic identities based on biology have also been highlighted (Fortier 2012; Morning 2014; Nash 2004a; Nelson 2008; Nordgren and Juengst 2009). To a lesser extent, how the forms of evidence used to access the remote past create gendered versions of history (usually favouring a patrilineal line of descent) has also been a cause for concern.

The problematic nature of relying on direct-line Y-chromosome tests for insights about “who you really are” is highlighted by the example of African-American users of DTC genetic testing seeking more information about their African ancestry, but regularly receiving results characteristic of European ancestry due to the grim realities of the sexual exploitation of female slaves by European owners (Tyler 2008; Nelson 2016). By way of contrast, discovering that one has a Y-chromosome characteristic or not of Viking ancestry may be seen as less of an existential challenge to one’s sense of self, and more of a form of recreation. However, as Sommer (2012) cautions, recreational genomics cannot necessarily be separated from wider political contestations of identity, culture, and gender.

In a similar vein, Nash (2012, 2015) argues that the cultural focus on “founding fathers”, such as Genghis Khan, to explain patterns of Y-chromosome variation (and genetic variation more broadly) draw on and simultaneously naturalise a patriarchal understanding of kinship. 

She also argues that popular accounts of such research tend towards a nostalgia for an imagined “heroic” past of simpler gender roles: one that represents men as warriors, women as passive, or even as possessions, and can “conjure up images of a harsher and simpler world of unlimited and often violent sex enjoyed by powerful men” (Nash 2015, p. 149).

Such a patriarchal “heroic” past chimes in with what Halewood and Hannam (2001, p. 566) have referred to as the “Anglo-American stereotypical representation of Viking heritage”: that of “sea-faring, sexist, and blood thirsty men raping and pillaging”. 

Even when Vikings are disassociated from violence and rape, they are still represented as somehow essentially masculine, and that this is encoded biologically. For instance, Kroløkke (2009) analysed the success of the Danish sperm bank, Cryos International in marketing its product as “Viking sperm”, and thereby as representing a genetically encoded masculine ideal.

Within this context, for an individual man to seek to establish his “Viking ancestry” is to situate himself, deliberately or otherwise, within a certain historical–cultural discourse of masculinity. 

LOL: Davidski, they've got you down buddy!  Substitute "Viking" in that sentence with "R1b" or "R1a" and half the "Bronze Age Studs" at Eurogenes will be crying in their soup.

Wednesday, December 23, 2015

The Spread of Haplogroups in Europe, Especially R1b

This post is intended to be a general foray into what I call "The Two -Ics" that explain modern haplogroup distributions: demographics and mathematics.  IMO, both are poorly understood.

It's been said, "to be an R1b Fantasist, you have to believe that I2-M26 came to predominate Sardinia by chance (e.g., Founder Effect and Drift) -- but that R1b came to predominate other locales (e.g., Ireland or Spain) by merit (e.g., military superiority or sexual selection)." 

It's also been said, "to be an R1b Fantasist, you have to now believe that R1b marks the spread of the first pastoralists, equestrians, and herders, and that you're now 100% correct that is right -- when just 2-3 years ago, you were 100% that Hg G2 was the mark of the first pastoralists and herders."

With respect to the first saying, I believe that most of the R1b apologists understand the former concepts (of chance as they apply to archaeogenetics), so this post is designed to build upon that knowledge, and add some demographics and mathematics too.

With respect to the second saying, I believe what is most key in a discipline like archaeogenetics is to recognize that theories and findings change from year to year, but the underpinnings of solid scientific method do not.

Let's get into it:

First, it is crucial to outline the possible outcomes.  Every generation, every clade and subclade of every Haplogroup has three "options" (or three outcomes).  Those are:

1.  Mutate (i.e., become something else)
2.  Propagate -- and, in more or less the same form, by having a male child who survives
3.  Die out, by having only daughters, or by having male children who fail to themselves breed

The "stakes" were more pronounced during prehistory than today, because the population sizes were so profoundly lower.  If you don't grasp this and accept it as fact, you can't grasp what I will detail later.

Population of Europe Over Selected Times  
(YBP = Years Before Present)

~50,000 YBP: No more than 10,000 (Neandertals)

~38,000 YBP - 19,000 YBP: No more than 37,000, likely population just 5,000

~12,000 YBP: About 28,000

~2000 YBP: About 35,000,000

-0 YBP: About 743,000,000
You can read more here.

In essence, you must remember that the population of Europe at the beginning of the time we are discussing (the post-glacial-maximum recolonization through the Bronze Age) was about 28,000 and peaked at maybe 100,000.  This is hard for the modern mind to comprehend, I know.  There were less people from Spain to Ukraine then, than there are in one city block in London now.

There are two takeaways:
1.  This made the population more susceptible to chance events, like a plague outbreak, or a famine in an area.

2.  This made the population more susceptible to massive dilution, when population started on its massive upward trajectory, after people started drinking milk, wine, and beer, when they started making cheese, when they started farming cereals and living in one spot, and when they started herding animals and having meat at will.

Going back to our three outcomes for Y Haplogroups, every generation: the first "takeaway" above should inform several likely mechanisms of how R1b spread over time.  If they entered a territory and had different disease resistance, it could have meant that large numbers of a tiny starting population would die off. 

Similarly, because the initial population was so small, when larger populations migrated for whatever reason, indeed possibly even as refugees from other regions, the other haplogroups would seem to have shrunk in size, whereas it really is different population sizes.

All this is just build up.  Our main focus, however, is the simple application of mathematics to Outcome 3 above.

This is what you need to know before we start:

1.  Hunter/gatherer women space babies on average 4.5 years apart, whereas farmers and moderns space them 1.5 years apart.

2.  The average paleolithic woman would have about 3.8 children.

3.  Infant mortality among hunter/gatherers is 30 times higher than among "civilized", and reached approximately 25% at many points during history.

4.  If the average hunter/gatherer family consisted of 3 children to live to adulthood, the odds of each family having just female kids survive was 12.5% each generation.  (.5 x .5 x .5)

Now just these numbers by themselves (HGs having fewer kids than farmers or pastoralists) explain a LOT. 

But the main point is thus: "older" non-mutated Y-chromosome haplogroups are found in lesser numbers simply because they are...older...


Every generation that a Hg exists and doesn't change, there is a 12.5% chance that those bearing it, in any one family, will not pass it along.  To be very clear: if a Hg does not mutate into something else -- or does not die entirely -- its numbers and distribution will decrease over time.  This applies to all except the most recent arrival, which is currently breeding like rabbits.  For example:

Many people believe that C1a was the first Y Hg in Europe.  There were probably just 5000-15,000 of them at any time.  By definition, the Hg C1a are folks that did not go on to mutate into any of the downstream clades.  Over time, the odds will catch up.

Many people believe that I2 was the next Y Hg in Europe.  There were probably just 10,000 - 50,000 of them at any time.  By definition, these are members of the IJ branch, and not members of F or K who mutated.  Over time, the odds will catch up.

These very simple concepts explain much of the modern distribution of haplogroups in Europe.  Is it more complex?  Sure.  Were there other factors?  Absolutely.  But over time, you cannot escape mathematics and demography being the biggest factors.

Saturday, December 12, 2015

How Little We Know About Ancient DNA - Part II

Earlier this year, I posted a series of maps graphically depicting the (at that time) exhaustive list of Ancient DNA finds, mapped out for both time and space.

The post, while now a bit dated due to additional finds, is still worth examining.  When reading it, it should becomes very apparent to you, the concept in the title of this post: How Little We Know About Ancient DNA.

As you can see from the maps, it appears that people bearing certain Y Chromosome haplogroups "flew" across time and space.  And that certain parts of Europe had nobody in them until someone flew across the distances.  

Of course, this is impossible.  It simply reflects the fact that we continue to have immense gaps in skeletal finds and in our knowledge.

Most importantly, it shows that today's conventional wisdom, popular at echo chambers like the Anthrogenica boards, will certainly change tomorrow -- revealing the adherents to such theories to be akin to arrogant fraudsters, peddling certainty where none is scientifically warranted.

Recently, a poster at Anthrogenica, with the handle Tomenable, posted an excellent visualization of the same gaps in knowledge that I referenced.

You can view a list of aDNA finds here, in chart form, courtesy of Tomenable.

And even better, here is a chart, in chronological order, showing the same.

What does the chart show?   By applying *scientific* methods of taking things to their logical conclusions, and reducing our knowledge to a set of provable statements, you can easily see how little we know.

For starters, based on these chrono maps, it looks like Haplogroup C1 made it to Europe after I2.  Yet almost everyone, from the scientific community to the "citizen" scientists (their term) on Anthrogenica, agree that C1 is a rare, likely "Cro-Magnon" marker, that represents the very first humans out of Africa and into Europe.  On the other hand, it has been accepted for over a decade that Haplogroup I, notably I2, represents the second (or third) wave of the population of Europe, associated with the Gravettian dispersions.  

But again, this is *not* "what the aDNA shows."

Ask the wiseguys on Anthrogenica, or search their posts.  They express with certainty that C1 came first, followed by I2.  And it probably is true.  But it is NOT born out by the aDNA evidence.  (Yet).

However, the same group of people turn to the aDNA evidence (blindly) to express 100% confidence in other theories, for example, everything from the notion that R1b xV88 couldn't be found west of modern Poland until the Indo-European expansions.  (I find this notion laughable.)  

They also rely on the aDNA evidence to express 100% confidence in wild notions of sex selection that have more in common with dimestore novels than anything scientific.  The proponents of said theories also happen to be mostly males bearing R1b.  Yes folks, in a world where racial identity is taboo, any sense of ingroup-outgroup dynamics for Western Europeans has simply been transferred to tiny markers on one chromosome.

In other words, many of these folks blindly turn to our meager aDNA evidence to justify their pet theory du jour, but choose to ignore what the aDNA evidence shows, when convenient.  

They cite gaps in data (i.e., a lack of samples) as evidence for proving a negative, as if that was possible -- when they want to.

But they ignore the lack of samples when convenient, if it doesn't fit in their narrative for that time or place.  

Doubt them, they revert to the argument "well, the aDNA shows..." but they are more than willing to fill in gaps in aDNA when convenient.

It's already been a rough year for the arrogantly certain in Ancient DNA.  Notably, past theories on the dispersion of Haplogroup J2 have fallen by the wayside.  Theories posted on Anthrogenica just a couple months ago, and accepted by the echo chamber as gospel fact, have been called into serious doubt by recent academic papers.  

I've also posted repeatedly on how difference in culture and hyperlocal topography can affect what aDNA survives into modern times.  The easiest example is one tribe burying their dead, while another tribe cremates it.  Anyone who knows anything about written history understands that the reason why we don't have m(any) ethnic Roman skeletons is because they cremated their dead.  To those who don't grasp this concept, it would be as if the Romans, a powerful, numerous, colonizing, widespread, important society -- didn't exist.  

I can just see Anthrogenica in the year 2515: "but there are no Roman samples in aDNA," they would maintain adamantly.  Yes, you would reply.  But the Romans existed.

The point is simple: approach any theories explaining what happened before written history with caution.  There are major gaps in the record, and it is far, far too early to approach things with the smug certainty one sees on these boards.  

Look at the samples across time and space (geography).  Don't hide behind relative, subjective terms like "Mesolithic" and "Neolithic."  Instead, look at how Europe was populated, the way it was populated --- in gradations, over (real) time.  You, too, will notice "How Little We Know (Still) About aDNA."